show Abstracthide AbstractIn this study, we compare the DNA binding specifify and affinity of SEPALLATA3 and AGAMOUS complexes The MADS transcription factors, SEPALLATA3 (SEP3) and AGAMOUS (AG), are required for floral organ identity and determinacy of the floral meristem in Arabidopsis. Dimerization is obligatory for their DNA binding, however SEP3 and SEP3-AG also form tetrameric complexes. The goal of this study is to understand how homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding patterns. Using a modified sequential DNA affinity purification sequencing protocol (seq-DAP-seq), we selectively purified SEP3 homomeric and SEP3-AG heteromeric complexes, including the dimeric SEP3 tet-AG complex and the tetrameric SEP3-AG complex, and determined their genome-wide binding. Overall design: We use a in vitro genome-wide DNA binding assay, termed sequential DNA affinity purification sequencing, to determine the genome-wide binding of SEP3-AG tetramer, SEP3?tet-AG dimer, and SEP3 homocomplex.